Google Maps Search

Phreaking

Phreaking is a slang term coined to describe the activity of a subculture of people who study, experiment with, or explore telecommunication systems, like equipment and systems connected to public telephone networks. The term "phreak" is derived from the words "phone" and "freak". It may also refer to the use of various audio frequencies to manipulate a phone system. "Phreak", "phreaker", or "phone phreak" are names used for and by individuals who participate in phreaking. Additionally, it is often associated with computer hacking. This is sometimes called the H/P culture (with H standing for Hacking and P standing for Phreaking). information on this site is for educational purposes only! Wyretap Network ©2007 - 2010

Disclaimer: The information on this site is for educational and entertainment purposes only. It is not intended to encourage or teach you to break the law, that's what TV is for, albeit in a very flawed manner. The owner(s) of this website will not be held liable for anything you choose to do with the information contained on this site. If you want to learn how to rape, murder, loot, and commit acts of terror on a monumental scale, well, you won't find it here. Instead, tune-in to your nightly news and take a lesson from your 'elected' 'leaders'.

Social engineering techniques and terms

All social engineering techniques are based on specific attributes of human decision-making known as cognitive biases.[1] These biases, sometimes called "bugs in the human hardware," are exploited in various combinations to create attack techniques, some of which are listed here:
Pretexting
Pretexting is the act of creating and using an invented scenario (the pretext) to persuade a targeted victim to release information or perform an action and is typically done over the telephone. It is more than a simple lie as it most often involves some prior research or set up and the use of pieces of known information (e.g. for impersonation: date of birth, Social Security Number, last bill amount) to establish legitimacy in the mind of the target. [2]
This technique is often used to trick a business into disclosing customer information, and is used by private investigators to obtain telephone records, utility records, banking records and other information directly from junior company service representatives. The information can then be used to establish even greater legitimacy under tougher questioning with a manager (e.g., to make account changes, get specific balances, etc).
As most U.S. companies still authenticate a client by asking only for a Social Security Number, date of birth, or mother's maiden name, the method is effective in many situations and will likely continue to be a security problem in the future.
Pretexting can also be used to impersonate co-workers, police, bank, tax authorities, or insurance investigators — or any other individual who could have perceived authority or right-to-know in the mind of the targeted victim. The pretexter must simply prepare answers to questions that might be asked by the victim. In some cases all that is needed is a voice that sounds authoritative, an earnest tone, and an ability to think on one's feet.
Phishing
Main article: Phishing
Phishing is a technique of fraudulently obtaining private information. Typically, the phisher sends an e-mail that appears to come from a legitimate business—a bank, or credit card company—requesting "verification" of information and warning of some dire consequence if it is not provided. The e-mail usually contains a link to a fraudulent web page that seems legitimate—with company logos and content—and has a form requesting everything from a home address to an ATM card's PIN.
For example, 2003 saw the proliferation of a phishing scam in which users received e-mails supposedly from eBay claiming that the user’s account was about to be suspended unless a link provided was clicked to update a credit card (information that the genuine eBay already had). Because it is relatively simple to make a Web site resemble a legitimate organization's site by mimicking the HTML code, the scam counted on people being tricked into thinking they were being contacted by eBay and subsequently, were going to eBay’s site to update their account information. By spamming large groups of people, the “phisher” counted on the e-mail being read by a percentage of people who already had listed credit card numbers with eBay legitimately, who might respond.
IVR or phone phishing
This technique uses a rogue Interactive voice response (IVR) system to recreate a legitimate sounding copy of a bank or other institution's IVR system. The victim is prompted (typically via a phishing e-mail) to call in to the "bank" via a (ideally toll free) number provided in order to "verify" information. A typical system will reject log-ins continually, ensuring the victim enters PINs or passwords multiple times, often disclosing several different passwords. More advanced systems transfer the victim to the attacker posing as a customer service agent for further questioning.
One could even record the typical commands ("Press one to change your password, press two to speak to customer service" ...) and play back the direction manually in real time, giving the appearance of being an IVR without the expense.
The technical name for phone phishing, is vishing.
Baiting
Baiting is like the real-world Trojan Horse that uses physical media and relies on the curiosity or greed of the victim.[3]
In this attack, the attacker leaves a malware infected floppy disk, CD ROM, or USB flash drive in a location sure to be found (bathroom, elevator, sidewalk, parking lot), gives it a legitimate looking and curiosity-piquing label, and simply waits for the victim to use the device.
For example, an attacker might create a disk featuring a corporate logo, readily available off the target's web site, and write "Executive Salary Summary Q2 2009" on the front. The attacker would then leave the disk on the floor of an elevator or somewhere in the lobby of the targeted company. An unknowing employee might find it and subsequently insert the disk into a computer to satisfy their curiosity, or a good samaritan might find it and turn it in to the company.
In either case as a consequence of merely inserting the disk into a computer to see the contents, the user would unknowingly install malware on it, likely giving an attacker unfettered access to the victim's PC and perhaps, the targeted company's internal computer network.
Unless computer controls block the infection, PCs set to "auto-run" inserted media may be compromised as soon as a rogue disk is inserted.
Quid pro quo
Quid pro quo means something for something:
An attacker calls random numbers at a company claiming to be calling back from technical support. Eventually they will hit someone with a legitimate problem, grateful that someone is calling back to help them. The attacker will "help" solve the problem and in the process have the user type commands that give the attacker access or launch malware.
In a 2003 information security survey, 90% of office workers gave researchers what they claimed was their password in answer to a survey question in exchange for a cheap pen.[4] Similar surveys in later years obtained similar results using chocolates and other cheap lures, although they made no attempt to validate the passwords.[5]
Other types
Common confidence tricksters or fraudsters also could be considered "social engineers" in the wider sense, in that they deliberately deceive and manipulate people, exploiting human weaknesses to obtain personal benefit. They may, for example, use social engineering techniques as part of an IT fraud.
The latest type of social engineering techniques include spoofing or hacking IDs of people having popular e-mail IDs such as Yahoo!, GMail, Hotmail, etc. Among the many motivations for deception are:
Phishing credit-card account numbers and their passwords.
Hacking private e-mails and chat histories, and manipulating them by using common editing techniques before using them to extort money and creating distrust among individuals.
Hacking websites of companies or organizations and destroying their reputation.

The Real ID Coming Soon!!!

Thursday, December 3, 2009

New Biochip Helps Study Living Cells, May Speed Drug Development

New Biochip Helps Study Living Cells, May Speed Drug Development
ScienceDaily (Oct. 21, 2006) — Purdue University researchers have developed a biochip that measures the electrical activities of cells and is capable of obtaining 60 times more data in just one reading than is possible with current technology.

In the near term, the biochip could speed scientific research, which could accelerate drug development for muscle and nerve disorders like epilepsy and help create more productive crop varieties.
"Instead of doing one experiment per day, as is often the case, this technology is automated and capable of performing hundreds of experiments in one day," said Marshall Porterfield, a professor of agricultural and biological engineering who leads the team developing the chip.
The device works by measuring the concentration of ions — tiny charged particles — as they enter and exit cells. The chip can record these concentrations in up to 16 living cells temporarily sealed within fluid-filled pores in the microchip. With four electrodes per cell, the chip delivers 64 simultaneous, continuous sources of data.
This additional data allows for a deeper understanding of cellular activity compared to current technology, which measures only one point outside one cell and cannot record simultaneously, Porterfield said. The chip also directly records ion concentrations without harming the cells, whereas present methods cannot directly detect specific ions, and cells being studied typically are destroyed in the process, he said. There are several advantages to retaining live cells, he said, such as being able to conduct additional tests or monitor them as they grow.
"The current technology being used in research labs is very slow and difficult," said Porterfield, who believes the new chip could help develop drugs for human disorders involving ion channel malfunction, such as epilepsy and chronic pain. About 15 percent of the drugs currently in development affect the activities of ion channels, he said, and their development is limited by the slower pace of current technology. The biochip would allow researchers to generate more data in a shorter time, thus speeding up the whole process of evaluating potential drugs and their different effects on ion channels.
Ion channels are particularly important in muscle and nerve cells, where they facilitate communication and the transfer of electrical signals from one cell to the next.
Within the 10-by-10 millimeter chip — roughly the size of a dime — cells are sealed inside 16 pyramidal pores, analyzed, and then can be removed intact. Since the technology does not kill the cells, it could be used to screen and identify different crop lines, Porterfield said.
"For example, let's say you were interested in developing corn varieties that need less fertilizer," he said. "If you had a library of genes that were associated with high nitrogen-use efficiency — thus making the plant need less nitrogen fertilizer — you could transform a group of maize cells with these genes and then screen each cell to determine the most efficient. Then you could raise the one that needed the least fertilizer, rather than putting a lot of different genes into hundreds of plants and waiting for them to grow, as is currently done."
In addition to the potential savings in time and money, Porterfield said the chip has allowed him to do research that would otherwise be impossible. He recently conducted a study on the "Vomit Comet," the nickname for a high-flying research plane used by NASA to briefly simulate zero gravity. The experiment analyzed gravity's effect on plant development, trying to solve the riddle of how a plant determines which way is "up."
"We conducted research with the chip while we were flying in parabolas over the Gulf of Mexico, going from two times Earth's gravity to zero gravity again and again," he said. "There is absolutely no way this experiment could have been done without this chip."
The current technology for analyzing cells' electrical activity, called "patch clamping," uses a tiny electrical probe viewed under a microscope. The technology garnered its inventors the Nobel Prize for Medicine and Physiology in 1991.
"It requires a lot of know-how and hand-eye coordination," Porterfield said of patch clamping.
The chip, on the other hand, is automated and could be mass-produced in the future. Such a readily available chip could record reams more data than patch-clamping, he said.
Ion channels and pumps establish a difference in electrical potential across a cell's membrane, which cells use to create energy and transfer electrical signals. By quickly allowing ions in and out, they are useful for rapid cellular changes, the kind which occur in muscles, neurons and the release of insulin from pancreatic cells.
The chip currently can detect individual levels of different ions. Porterfield believes that with some modifications, however, the chip will be able to measure multiple ions at once and perform even more advanced functions such as electrically stimulating a cell with one electrode while recording the reaction with the remaining three.
Because ion channels are a prominent feature of the nervous system and elsewhere, they are a popular target for drugs. For example, lidocaine and Novocain target sodium-channels. In nature, some of the most potent venoms and toxins work by blocking these channels, including the venom of certain snakes and strychnine.
Porterfield's chip is technically classified as a "cell electrophysiology lab-on-a-chip." The device is further described in an article in the journal Sensors and Actuators, published online this month and scheduled to appear in the print edition in November.
Porterfield has been working on the biochip for almost two years and is currently working to expand its capabilities. The just-published study was funded by NASA and the Lilly Foundation.
Email or share this story

No comments: