Google Maps Search

Phreaking

Phreaking is a slang term coined to describe the activity of a subculture of people who study, experiment with, or explore telecommunication systems, like equipment and systems connected to public telephone networks. The term "phreak" is derived from the words "phone" and "freak". It may also refer to the use of various audio frequencies to manipulate a phone system. "Phreak", "phreaker", or "phone phreak" are names used for and by individuals who participate in phreaking. Additionally, it is often associated with computer hacking. This is sometimes called the H/P culture (with H standing for Hacking and P standing for Phreaking). information on this site is for educational purposes only! Wyretap Network ©2007 - 2010

Disclaimer: The information on this site is for educational and entertainment purposes only. It is not intended to encourage or teach you to break the law, that's what TV is for, albeit in a very flawed manner. The owner(s) of this website will not be held liable for anything you choose to do with the information contained on this site. If you want to learn how to rape, murder, loot, and commit acts of terror on a monumental scale, well, you won't find it here. Instead, tune-in to your nightly news and take a lesson from your 'elected' 'leaders'.

Social engineering techniques and terms

All social engineering techniques are based on specific attributes of human decision-making known as cognitive biases.[1] These biases, sometimes called "bugs in the human hardware," are exploited in various combinations to create attack techniques, some of which are listed here:
Pretexting
Pretexting is the act of creating and using an invented scenario (the pretext) to persuade a targeted victim to release information or perform an action and is typically done over the telephone. It is more than a simple lie as it most often involves some prior research or set up and the use of pieces of known information (e.g. for impersonation: date of birth, Social Security Number, last bill amount) to establish legitimacy in the mind of the target. [2]
This technique is often used to trick a business into disclosing customer information, and is used by private investigators to obtain telephone records, utility records, banking records and other information directly from junior company service representatives. The information can then be used to establish even greater legitimacy under tougher questioning with a manager (e.g., to make account changes, get specific balances, etc).
As most U.S. companies still authenticate a client by asking only for a Social Security Number, date of birth, or mother's maiden name, the method is effective in many situations and will likely continue to be a security problem in the future.
Pretexting can also be used to impersonate co-workers, police, bank, tax authorities, or insurance investigators — or any other individual who could have perceived authority or right-to-know in the mind of the targeted victim. The pretexter must simply prepare answers to questions that might be asked by the victim. In some cases all that is needed is a voice that sounds authoritative, an earnest tone, and an ability to think on one's feet.
Phishing
Main article: Phishing
Phishing is a technique of fraudulently obtaining private information. Typically, the phisher sends an e-mail that appears to come from a legitimate business—a bank, or credit card company—requesting "verification" of information and warning of some dire consequence if it is not provided. The e-mail usually contains a link to a fraudulent web page that seems legitimate—with company logos and content—and has a form requesting everything from a home address to an ATM card's PIN.
For example, 2003 saw the proliferation of a phishing scam in which users received e-mails supposedly from eBay claiming that the user’s account was about to be suspended unless a link provided was clicked to update a credit card (information that the genuine eBay already had). Because it is relatively simple to make a Web site resemble a legitimate organization's site by mimicking the HTML code, the scam counted on people being tricked into thinking they were being contacted by eBay and subsequently, were going to eBay’s site to update their account information. By spamming large groups of people, the “phisher” counted on the e-mail being read by a percentage of people who already had listed credit card numbers with eBay legitimately, who might respond.
IVR or phone phishing
This technique uses a rogue Interactive voice response (IVR) system to recreate a legitimate sounding copy of a bank or other institution's IVR system. The victim is prompted (typically via a phishing e-mail) to call in to the "bank" via a (ideally toll free) number provided in order to "verify" information. A typical system will reject log-ins continually, ensuring the victim enters PINs or passwords multiple times, often disclosing several different passwords. More advanced systems transfer the victim to the attacker posing as a customer service agent for further questioning.
One could even record the typical commands ("Press one to change your password, press two to speak to customer service" ...) and play back the direction manually in real time, giving the appearance of being an IVR without the expense.
The technical name for phone phishing, is vishing.
Baiting
Baiting is like the real-world Trojan Horse that uses physical media and relies on the curiosity or greed of the victim.[3]
In this attack, the attacker leaves a malware infected floppy disk, CD ROM, or USB flash drive in a location sure to be found (bathroom, elevator, sidewalk, parking lot), gives it a legitimate looking and curiosity-piquing label, and simply waits for the victim to use the device.
For example, an attacker might create a disk featuring a corporate logo, readily available off the target's web site, and write "Executive Salary Summary Q2 2009" on the front. The attacker would then leave the disk on the floor of an elevator or somewhere in the lobby of the targeted company. An unknowing employee might find it and subsequently insert the disk into a computer to satisfy their curiosity, or a good samaritan might find it and turn it in to the company.
In either case as a consequence of merely inserting the disk into a computer to see the contents, the user would unknowingly install malware on it, likely giving an attacker unfettered access to the victim's PC and perhaps, the targeted company's internal computer network.
Unless computer controls block the infection, PCs set to "auto-run" inserted media may be compromised as soon as a rogue disk is inserted.
Quid pro quo
Quid pro quo means something for something:
An attacker calls random numbers at a company claiming to be calling back from technical support. Eventually they will hit someone with a legitimate problem, grateful that someone is calling back to help them. The attacker will "help" solve the problem and in the process have the user type commands that give the attacker access or launch malware.
In a 2003 information security survey, 90% of office workers gave researchers what they claimed was their password in answer to a survey question in exchange for a cheap pen.[4] Similar surveys in later years obtained similar results using chocolates and other cheap lures, although they made no attempt to validate the passwords.[5]
Other types
Common confidence tricksters or fraudsters also could be considered "social engineers" in the wider sense, in that they deliberately deceive and manipulate people, exploiting human weaknesses to obtain personal benefit. They may, for example, use social engineering techniques as part of an IT fraud.
The latest type of social engineering techniques include spoofing or hacking IDs of people having popular e-mail IDs such as Yahoo!, GMail, Hotmail, etc. Among the many motivations for deception are:
Phishing credit-card account numbers and their passwords.
Hacking private e-mails and chat histories, and manipulating them by using common editing techniques before using them to extort money and creating distrust among individuals.
Hacking websites of companies or organizations and destroying their reputation.

The Real ID Coming Soon!!!

Sunday, July 18, 2010

Wi-Fi channel planning in 2.4 GHz - Part 2

In my last post, I talked about Wi-Fi channel planning in 2.4 GHz. The main consideration with this frequency band is that there are only three non-overlapping channels and that careful planning needs to happen in order to avoid co-channel interference.

After reading the article, someone emailed me several great questions and suggested a follow up post. Here is what they asked:

You say in this post that co-channel interference can occur when 2 nearby APs are operating on the same channel. I wonder if you can expand on that. It raised some questions for me. First, why doesn't one AP act as "boaster" to another? Second, does that mean that an enterprise can only have 3 APs in a physical space? If so, what's the size limitation?

Regarding the first question, one access point cannot act as a "boaster" to another as the station (i.e. laptop) needs to build an association to a specific Access Point. This association process is similar to plugging your computer into a specific Ethernet switch port if you were using wired networking.

Therefore, once a wireless station is associated to an Access Point, it has a physical layer link. Because this specific path/link is established, another access point cannot process data without the station disassociating from the original AP and associating with the second - this is roughly analogous to unplugging your cable from one port and plugging it into a second.

Regarding the second question, because of co-channel interference, an enterprise can only have 3 APs in a given physical space (if they are using 2.4 GHz). The size limitation depends on many factors including the output power of the access point, if any special antennas are being used, and the construction materials of the area. Typically, an AP with an omni-directional antenna in general office space covers about 5,000 square feet.

This becomes an issue in high-density situations as each Access Point can only handle a certain number of stations. My rule here is that a typical AP can handle 20-25 stations, depending on bandwidth requirements. Therefore, organizations run into a problem where they would like to have more than 60-75 users in a given space (such as conference centers, meeting rooms, theatres, multipurpose rooms, cafeterias or gymnasiums).

Don't fret - there is another option, which is to use wireless devices in the 5 GHz frequency band. 5 GHz has many advantages over 2.4 GHz, including *many* more non-overlapping channels. In fact, 5 GHz has 24 non-overlapping channels, which make it an especially popular choice for industries with high density requirements. That being said, one of the most important considerations for 5 GHz deployments is to ensure that all your end user devices are capable of transmitting in the 5 GHz spectrum.

Douglas J. Haider is a Principal Technologist with Xirrus. He hosts a personal blog at WiFiJedi.com, and micro-blogs on Twitter @wifijedi

No comments: